BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla
Published in Findings of the ACL: EACL, 2023
This work presents BanglaNLG, a comprehensive benchmark for evaluating natural language generation (NLG) models in Bangla, a widely spoken yet low-resource language in the web domain. We aggregate three challenging conditional text generation tasks under the BanglaNLG benchmark. Then, using a clean corpus of 27.5 GB of Bangla data, we pretrain BanglaT5, a sequence-to-sequence Transformer model for Bangla. BanglaT5 achieves state-of-the-art performance in all of these tasks, outperforming mT5 (base) by up to 5.4%. We are making the BanglaT5 language model and a leaderboard publicly available in the hope of advancing future research and evaluation on Bangla NLG.