# **A Corpus to Learn Refer-to-as Relations for Nominals**

Wasi Uddin Ahmad, and Kai-Wei Chang {wasiahmad, kwchang}@cs.ucla.edu

Department of Computer Science, University of California, Los Angeles

#### Objective

Continuous representations of words and phrases should contain information for identifying referto-as relationship. In this work:

• We construct a corpus to learn continuous

| Number of articles                     | 16,388,870                              | Т |
|----------------------------------------|-----------------------------------------|---|
| Number of redirected articles          | 6,466,828                               |   |
| Number of non-redirected articles      | 9,922,042                               |   |
| Unique noun mentions                   | 26,660,798                              |   |
| Unique nominal mentions                | 2,512,347                               |   |
| Unique nominal mentions                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Т |
| $(1 \le \text{mention length} \le 30)$ | 1,420,441                               |   |

#### **Corpus Statistics**

| Troin             | Total nominal coref. chain | 78,665 |
|-------------------|----------------------------|--------|
| (cre: Wilringdie) | Avg. candidates per chain  | 24     |
| (SIC. WIKIPedia)  | Total unique terms         | 35,939 |
| Dovolopmont       | Total nominal coref. chain | 8,354  |
| (cree Wilcipedie) | Avg. candidates per chain  | 18     |
| (SIC. WIKIPedia)  | Total unique terms         | 6,686  |
| Toot              | Total nominal coref. chain | 623    |
| (src: CoNLL)      | Avg. candidates per chain  | 12     |
|                   | Total unique terms         | 2,839  |

representations for nominals through which refer-to-as relations can be captured.

• We design a *mention* ranking task by simplifying the coreference resolution task to evaluate the learned nominal embeddings.

Table 1:Corpus description extracted from Wikipedia

Table 2:Data Description

# Motivation

- Semantic representation of "phd candidate" and "graduate student" should indicate that they can be co-referred to each other.
- Refer-to-as relations can be resolved by taking help from knowledge source, ex., Wikipedia.

## Nominal Coreference Example

"A female motorist wearing a blue shirt abruptly made a left turn, ignoring the officer's attempt to initiate a traffic stop. The driver continued to drive erratically to Annapolis Road."

| Target Mention       | Positive Candidates                     | Negative Candidates                      |
|----------------------|-----------------------------------------|------------------------------------------|
| protein sequence     | amino acid sequencing, chain of amino   | metabolic enzymes, biological muta-      |
|                      | acids, peptide sequence, protein pri-   | tions, periodic sequence, nucleotide se- |
|                      | mary structure                          | quence                                   |
| general election     | whole coalition, upcoming election, the | the constitutional amendment, election   |
|                      | previous election, election campaign,   | win, the presidential election, demo-    |
|                      | legislative election                    | cratic political values                  |
| aerial bomb          | aerial bombardment, bombing, bomb       | nuclear bomb technology, terror at-      |
|                      | attack                                  | tacks, attack ground targets, atomic     |
|                      |                                         | weapon                                   |
| highway construction | roads road building equipment road      | highway marker construction vard         |

**Coreference** Clusters generated from Wikipedia

• Both nominals, "A female motorist wearing a blue shirt" and "The driver" refer to the same entity.

#### **Dataset Construction**

- Each Wikipedia article is treated as an entity (or concept or idea), and the anchor text of in-links as a mention of the entity.
- Anchor texts are tagged using Stanford POS tagger and the non-capitalized noun phrases are considered as nominals.
- https://github.com/wasiahmad/mining\_ wikipedia/tree/master/WikiMiner

Learning Phrase Embeddings

inginary construction roads, road building equipment, road inginary marker, construction yard, work construction, street construction, railway and highway bridge, construction superintendent road building

Table 3: Example of positive and negative coreference clusters generated from Wikipedia

#### **Baseline Results**

- Mention Embeddings:  $Sim(p_1, p_2) = cosine(E(p_1), E(p_2))$  where  $E(p) = \frac{1}{n_p} \sum_{k=1}^{n_p} w_k$  and  $p = w_1, \ldots, w_{n_p}$ • Mention Embeddings + FFNN:  $Sim(p_1, p_2) = \sigma(u^T tanh(W[E(p_1), E(p_2)] + b))$ where  $W \in R^{d_e \times d_e}$ ,  $b, u \in R^{d_e}$ , and  $[E(p_1), E(p_2)]$  represents concatenation of the phrase embedding pair.
- Bidirectional-LSTM + CNN + FFNN: A BiLSTM followed by a CNN is used to form phrase vectors and a FFNN is used to compute the similarity score.

| Model                           | NLL-Loss | MAP    | P@1    | P@5    | R@1    | R@5    |
|---------------------------------|----------|--------|--------|--------|--------|--------|
| Mention Embeddings              | 1.7389   | 0.5452 | 0.5185 | 0.2374 | 0.3715 | 0.7630 |
| Mention Embeddings + FFNN       | 1.7836   | 0.4632 | 0.4995 | 0.2317 | 0.3516 | 0.7888 |
| Bidirectional-LSTM + CNN + FFNN | 1.6731   | 0.4884 | 0.4719 | 0.2475 | 0.3476 | 0.8025 |

Table 4:Performance of baseline methods.

- To evaluate the learned representation of noun phrases, we propose a ranking task:
- Given a target mention and a list of candidate mentions, the goal is to rank the mentions in the candidate list based on how likely it is co-referred with the target mention without considering the context.
- We learned the phrase embeddings based on the following neural network architecture:
- We use a bidirectional LSTM to learn word representations (contextualized) and use a CNN to construct phrase representations.
- Embeddings of the target mention and one of the candidate mentions are concatenated and passed through a feed-forward neural network to compute the similarity score.

#### Conclusion

In order to learn representations which can capture the refer-to-as relationship between nominals, we propose a corpus extracted from Wikipedia.

#### References

#### [1] P. Denis and J. Baldridge.

Specialized models and ranking for coreference resolution. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 660-669, 2008.

[2] S. J. Wiseman, A. M. Rush, S. M. Shieber, and J. Weston.

Learning anaphoricity and antecedent ranking features for coreference resolution.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, 2015.

### Acknowledgements

This work was supported in part by National Science Foundation Grant IIS-1760523 and an NVIDIA Hardware Grant.

