

Intent-aware Query Obfuscation for Privacy Protection in Personalized Web Search

Wasi Uddin Ahmad University of California, Los Angeles Kai-Wei Chang University of California, Los Angeles

Hongning Wang University of Virginia

Motivation

• Personalization is everywhere

Previous Solutions

- Identifiability aspect of privacy
 - Secured communication, encrypted data storage
- Linkability aspect of privacy
 - Plausible deniable search
 - Submit proxy query instead of the true query
 - Obfuscation-based private web search
 - Submit cover-up queries along with the true query

Motivation

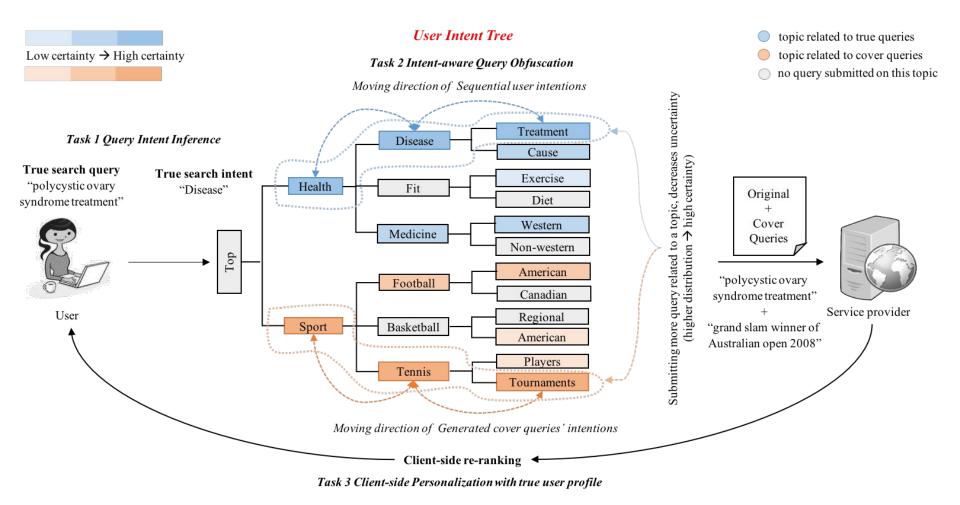
Do users submit isolated queries during web search?

Assumption

Topics of search queries are sensitive
 Indicate a user's (private) search intent

All search query topics are sensitive
 Leads to stronger privacy protection

Definitions


- User profile a hierarchically organized tree where,
 - Each node represents a topic (a.k.a intent)
 - Each topic contains N-gram language models (LM)
 - LMs are approximated based on submitted queries and clicked documents
- Search task A sequence of queries submitted in the same search session
 - Assumption: associated topics must form a sub-tree in the original topic tree

Main Idea

Intent-aware Query-obfuscation for Private-protection (IQP)

- Obfuscate search tasks to achieve task-level privacy
- Map a search task to a subtree of the intent tree
 Intent tree: a predefined tree of topics
- Maintain the difference in prior and posterior belief of a search engine for true and cover search tasks

IQP Framework

Step 1: Query Intent Inference

- Query intent (a.k.a topic) is approximated using hierarchical language model
 - Hierarchical Dirichlet prior smoothing is performed
- Search intent is predicted by the maximum a posterior inference
- The prior of a topic is proportional to the #nodes in the subtree rooted at the topic node

Step 2: Intent-aware Cover Query and Click Generation

- 1. Select cover query topics
 - a. Specificity of the true query intent
 - b. Transition between previous and current query intent
- 2. Generate cover query
 - a. Rejection sampling is utilized
 - b. Conditioned on entropy difference between true and cover queries
- 3. Trained positional click model is employed to generate cover clicks

Step 3: Client-side Personalization

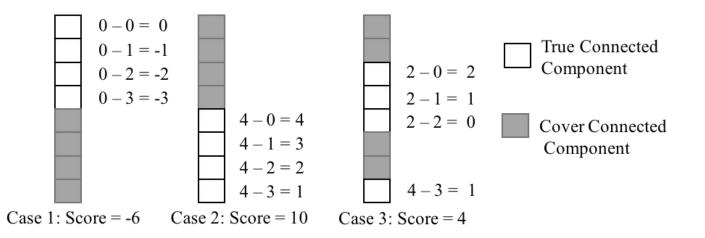
- Client-side reranking using an uncontaminated user profile
- Borda's method for rank aggregation
- Personalization score is computed based on client-side user profile
 - An estimated language model is utilized

$$UPScore(d) = \sum_{w \in q \cap d} \log \frac{(1 - \lambda)P_{ml}(w|d) + \lambda P(w|C)}{\lambda P(w|C)} tf(w)$$

Where, q, d and C denotes query, documents and clientside user profile respectively.

Example

• Session is sampled from AOL search log, 2006


Session queries	pregnancy symptoms in the first month		
-	abortion pills		
	florida abortion clinics		
Query topics	Home/Family/Pregnancy		
	Society/Issues/Abortion		
	Society/Issues/Regional		
Cover queries	Low priced compact flash GPS receivers		
	global hotel investment trends		
	commercial real estate development		
Cover query topics	Shopping/Consumer_Electronics/Accessories		
	Business/Real_Estate/Property_Management		
	Business/Real_Estate/Development		

Measuring Task-level Privacy

- Prior works focused on query-level privacy evaluation metrics
 - KL-divergence, normalized mutual information etc.
- Proposed two new metrics to evaluate task-level privacy protection
 - Transition index (tIndex)
 - Confusion index (clndex)

Confusion Index (cIndex)

- Measures search engine's belief of a user's search task
 - Search tasks are represented as a sub-tree
- Follows the entropy I-diversity principle
 - Quantifies the difference in prior and posterior distributions of the subtrees associated with true and cover tasks

Transition Index (tIndex)

- Measures task plausibility based on queries' concentration on the intent tree
- A predefined matrix representing transition of intents against the intent tree structure
 - States: {UP1, UP2, DOWN1, DOWN2, SA, MB, Others}
 - Estimated based on a reference search log
- Counts how many cover tasks are ranked ahead of true tasks
 - Score based on intent transition likelihood

Experiments

Data Sources

- Open Directory Project
 - 7,600 topic nodes up to level four
 - 82,020 web documents belonging to the nodes
- AOL search log, 2006
 - 1000 most active users
 - 318,023 testing queries
 - 0.96M web documents indexed
 - Clicked documents are considered as relevant

Experimental Setup

- Apache Lucene-based search engine
 - Ranking algorithm Okapi BM25
- Server personalizes search result
 - Using language model estimated based on user profiles
 - Borda's method for rank aggregation
- Server returns the top 100 relevant documents
- Sessions are segmented based on 30-minutes inactive time threshold

Evaluation Metrics

- Mean Average Precision (MAP@100)
 - To evaluate ranking quality
- Kullback-Leibler (KL) Divergence
 - Computed between the true and noisy user profiles
 - Measures the effectiveness of privacy protection
- Normalized Mutual Information (NMI)
 - Computed between true and cover query pairs
 - Measures information disclosure by the cover queries

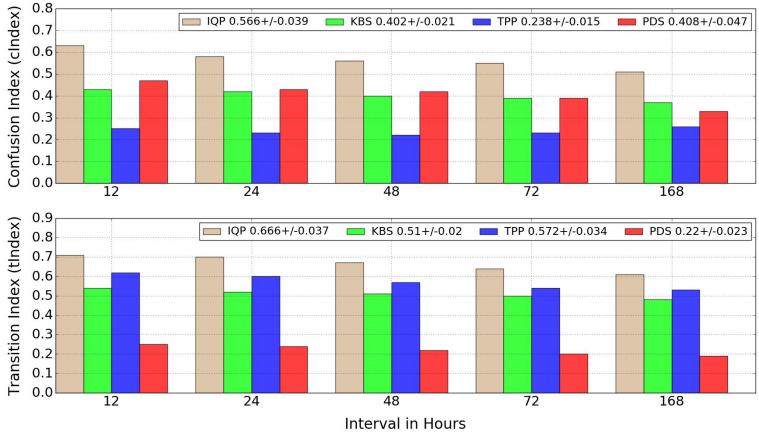
- Plausible Deniable Search (PDS)
 - Latent semantic indexing to generate cover queries

- Plausible Deniable Search (PDS)
 - Latent semantic indexing to generate cover queries
- Knowledge-based Scheme (KBS)
 - Cover queries from lexical ontology (WordNet, ODP tree)

- Plausible Deniable Search (PDS)
 - Latent semantic indexing to generate cover queries
- Knowledge-based Scheme (KBS)
 - Cover queries from lexical ontology (WordNet, ODP tree)
- Topic-based Privacy Protection (TPP)
 - Sample cover query terms using LDA-based topic models

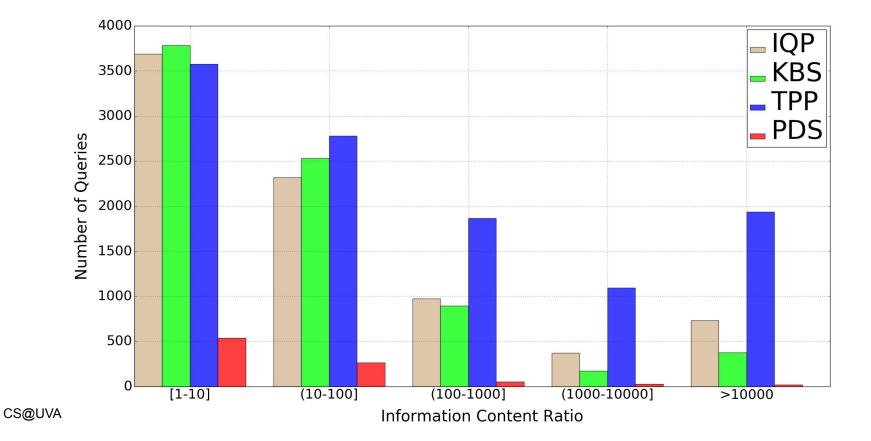
- Plausible Deniable Search (PDS)
 - Latent semantic indexing to generate cover queries
- Knowledge-based Scheme (KBS)
 - Cover queries from lexical ontology (WordNet, ODP tree)
- Topic-based Privacy Protection (TPP)
 - Sample cover query terms using LDA-based topic models
- Embellishing Search Queries (ESQ)
 - Embellish user query by adding decoy terms

- Plausible Deniable Search (PDS)
 - Latent semantic indexing to generate cover queries
- Knowledge-based Scheme (KBS)
 - Cover queries from lexical ontology (WordNet, ODP tree)
- Topic-based Privacy Protection (TPP)
 - Sample cover query terms using LDA-based topic models
- Embellishing Search Queries (ESQ)
 - Embellish user query by adding decoy terms
- Anonymizing User Profiles (AUP)
 Hide individual user identity inside groups' identities

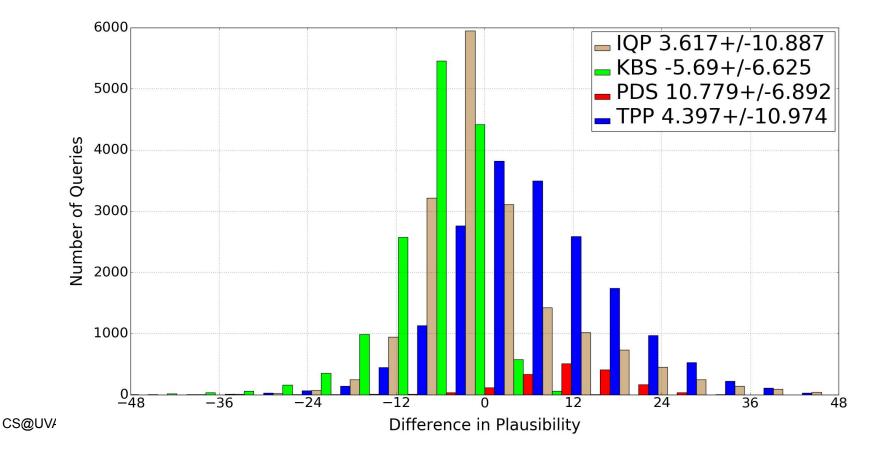

Comparison with Baselines

Model	MAP@100	MAP@100 [client-side personalization]	KL Divergence	NMI	
No cover queries					
AUP	0.1088	0.1171	0.9636		
ESQ	0.1161	0.1090	0.0912		
Number of cover queries = 2					
IQP	0.1387	0.1486	0.6866	0.2156	
TPP	0.1158	0.1174	0.7558	0.3922	
PDS	0.1307	0.1391	0.4467	0.4308	
KBS	0.1255	0.1474	0.7001	0.2914	

* Detailed results can be found in the paper. VA Privacy Preserving Personalization


Measuring Task-Level Privacy Protection

• Compares in-session true task and cover task


Statistical Query Plausibility

Measures the ratio of search result hits for a query pair
 Microsoft Bing API to get the hit count

Statistical Query Plausibility

- Compare true and cover queries at web-scale
 - Microsoft Web Language Model API

Conclusion and Future Works

- Intent-aware query obfuscation solution
 - Handles sequentially developed intents in search tasks
- Proposed two new metrics measuring task-level privacy disclosure
- Future Works
 - Adaptively adjust the number of cover queries
 - Relaxing the assumption that all queries are equally sensitive
 - Perform user studies
 - Understanding real user's satisfaction of privacy protection solutions

Thank You