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Natural Language Processing (NLP)

What does an NLP system need to know?
* Languages consist of many levels of structure
* Morphology, syntax, semantics, pragmatics
* Humans fluently integrate all of these in understanding languages
* Ideally, so would an NLP system!

Courtesy: http://www.cs.cmu.edu/~ytsvetko/ jsalt-partl.pdf
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Multilingual NLP

* NLP systems capable of understanding many languages
* Why do we need multilingual NLP systems?

1. Commercial value

2. Social well-being

3. Information dissemination

[1] https://www.ethnologue.com/browse/families
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Multilingual NLP

* NLP systems capable of understanding many languages
* Challenges
1. Linguistic diversity
« 7000+ word languages, 14+ language familiest!]
 Languages diverge across all levels of language structure

2. Inequality in available language resources
* Labeled and unlabeled resources vary across languages

[1] https://www.ethnologue.com/browse/families
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Inequality In Language Resources

Development in NLP technology mostly benefited the
resource-rich languages (class b)

Class | #Langs | #Speakers | % of Total Langs
0 2191 1.2B 88.38%
1 222 30M 5.49%
2 19 5™ 0.36%
3 28 1.8B 4.42%
4 18 2.2B 1.07%
5 7 2.5B 0.28%
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Image reference: The State and Fate of Linguistic Diversity and Inclusion in the NLP World, ACL 2020.
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High-resource Languages

Languages having large collection of labeled or unlabeled corpora
or manually crafted linguistic resources
sufficient for building statistical NLP solutions.

Examples: English, Chinese, etc.

Low-resource Languages

Languages lacking large collection of labeled or unlabeled corpora
or manually crafted linguistic resources
sufficient for building statistical NLP solutions.

Examples: Swahili, Nepali, etc.
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Cross-lingual Transfer

Learn/finetune language representations
in high-resource language(s)

|

Use/adapt the learnt representations
in low-resource language(s)
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Cross-lingual Transfer

Learnt Model

Outputs contextualized A task-specific layer

Tl"Giﬂ USiﬂg i word representations E Ethat makes predictionsE
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Multilingual embeddings for the l

input sentence PHYS:Locate
Attacker Place

I I I I I I I Terrorists started firing at the hotel

Sou r'ce Langu age Terrorists started firing at the hotel .
LT T st ‘ Target Language

-~ "PHYS:Located =~ )'/Pl;a
| FACILITY | | ATTACK |

k8B RN

’// \\\

Terrorists started firing at the hotel

English Corpus Chinese Corpus
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Challenges: Cross-lingual Transfer

1. Languages differ at levels of morphology, syntax, and
semantics
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Syntactic Differences

Syntactic differences in terms of word order, word grammar

NLP systems typically process a natural language text as a sequence of
words, thus word order matters!

English: Subject-Verb-Object (SVO)
Nepali: Subject-Object-Verb (SOV)
SV O
| eat rice

sﬂraﬂ?r@ﬁ'@r

S O V
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Syntactic Differences

Does utilizing universal language syntax can bridge the
syntactic differences across languages?

He moved outside of Augusta right away . He right away Augusta of outside moved .

o NN /S

:Egl/ed EWW&SWﬁWI
jVERB \ EG|
root

He Augusta / away : VERB\
|

nsubj /obl advmod punct — ee—) . 1 &
PRON PROPN ADV PUNCT EH oxd 3TRET Y
‘ nsubj:pass advmod obl aux:pass punct
outside of right PRON ADV PF&OPN\ AUX PUNCT
advmod case advmod
ADV  ADP ADV $ AR
case case
ADP ADP
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Thesis Goals (1)

Encoding universal language syntax to bridge
typological differences across languages
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Challenges: Cross-lingual Transfer

2. Cross-lingual representation learning models often carry
language specific information

* Casel: When models are fine-tuned on high-resource languages

 Case2: When models are jointly pre-trained on many languages with
different scale of pre-training data
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Thesis Goals (2)

Using unlabeled resources to facilitate cross-lingual
representation learning
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Thesis Statement

Encoding universal language syntax to bridge typological
differences across languages

and

utilize unlabeled resources to facilitate cross-lingual
representation learning
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Overview of Our Works

(NAACL 2019)
Cross-lingual Transfer with Order Differences

(AAATI 2021)
_____ Representation Learning with

-
=~

High-resource
Languages

(e.g., English, Java,
Python)

Universal Dependencies

-~
e
——

-—
S~

Dissertation Title

——
~.
S

Cross-lingual Representation Learning
for Natural Language Processing

S Low-resource
—> Languages
¥ (e.g., Arabic, Ruby)
(ACL 2021) '
S Syntax-augmented Pre-trained

A
Encoders for Cross-lingual Transfer

(CoNLL 2019, NAACL 2021)

Representation Learning using Unlabeled Data
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Contributions

[1] What type of neural architectures are suitable to learn transferable
representations? What is the impact of the distance between the
source and target languages?

2] How Yo improve cross-lingual representations to develop cross-
ingual information extraction system?

(3] Does incorporating universal language syntax into multilingual
encoders improve cross-lingual transfer?

[4] How to use unlabeled resources to learn robust and generalizable
cross-lingual representations?




Outline

[1] Order-free neural architectures improve cross-lingual transfer and
more effective when transferred to distant languages [at NAACL'19]

2] Syntactic distance encoding in representation learning for cross-
ingual information extraction [at AAATI'21]

3] Incorporating universal language syntax into multilingual encoders
for cross-lingual transfer [at ACL'21]

[4] Adversarial learning using unlabeled language resources to learn
language-agnostic representation [at CoNLL'19]

[4] Unsupervised cross-lingual representation learning for natural and
programming languages [at NAACLI'21]
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Background

Considering an input text sequence with 8 words.

Input

He

moved

outside of Augusta right away

Word id

141

W»

W3 Wy Wsg Wg Wy

Wg

« Words are embedded into vectors: w; = w;W,

0,0

* The embeddings matrix: H° = [x{,x7, ..., x3] where x? = w|

Ph.D. Dissertation Defense by Wasi Ahmad
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Background

Recurrent neural networks implicitly capture word order

Embeddings matrix: H® = [x?,x2, ..., x2]

|

ht = LSTM}(hL_,, x})
hi = LSTM{ (hfq, x})

_ il Rl ol ol
xt = [ht, hi]; H =[x}, x5, ..., x}]
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Background

Self-attention* does not model word order

Embeddings matrix: H® = [x?,x2, ..., x2]

|

Q — Hl—lm/lQ’:]C — Hl_lle,v — Hl—1WlV
KT+ Mm
Q )V

Jax

O = Attention (Q,K,V,M,d;) = softmax (
H' = FFNN(0O) = [x}, x5, ..., xL]

* Vaswani et al., 2017
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Self-Attention Mechanhism

Input "Natural Language” is treated as a bag of words

Input Word Queries Keys  Values Attention Divided by
Embedding Scores [d,
X1 d1 U1
) O I ﬁ ﬁ g =112 14
c i . —
3 [] 01 96 12
X2

q> ()
g, - =108 13
qZ . = 144‘ 18

Image idea courtesy: https://jalammar.github.io/illustrated-transformer

23engue
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Background

Self-attention™ requires to be provided position information

Input He moved outside of Augusta right away
Wordid | w;  wy W3 Wy We Weg W7  Wg
Positionid | p;  p, Ps  Ps  Ds Ps D7 Ds

« Words are embedded into vectors: w; = w; I,
* Positions are embedded into vectors: p; = p;W,

» The embeddings matrix: H® = [x7,x3, ..., x| where x{ = w{ + p;

* Vaswani et al., 2017
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Background

Self-attention™ requires to be provided order information

_ QKT + M
O = Attention (Q,K,V,M,d;) = softmax 1%

Vi
Re-writing the attention weight between token at position i and j
1
G = T (xileQ)(x}WzK)

1 !/ !/ !/ !/
For layer 1> a;; = T ((w; + Pi)W1Q)((Wj +pHW)

I I

Indicates absolute position of tokens
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Recap Thesis Proposal

Order-free model: self-attention with relative positions

oxT + M)V
NED

Re-writing the attention weight between token at position i and j

O = Attention (Q,K,V,M,d;) = softmax (

1
G = T (xileQ)(x}WzK)

For layer 1 > a;; = \/%k (Wl-'WlQ)(Wj'WlK + 7”|1i_j|)

I

* Published at NAACL 2019 '
ublished a Absolute distance between tokens
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Recap Thesis Proposal

Representations learnt by order-free models transfer better
XLT-performance (OF-models) > XLT-performance (OS-models)

* Published at NAACL 2019
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Recap Thesis Proposal

Given
* Labeled resources in source languages (X¢)

» Unlabeled resources in auxiliary languages (X°)

Objective

 Adversarially train a model M and a discriminator D such that M does
not carry language-specific information

Summary
« We showed that representations learnt by M transfer better

* Published at CoNLL 2019
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Outline

[3] Incorporating universal language syntax into multilingual encoders
for cross-lingual transfer [at ACL'21]

[4] Unsupervised cross-lingual representation learning for natural and
programming languages [at NAACLI'21]
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Information Extraction (IE)

PHY S:Located

= ——————
- -
-— ‘-
- S -
-
- -

PERSON ATTACK FACILITY

Terrorists started firing at the hotel
Figure: A relation (red dashed) between two entities and an event of

type Attack (triggered by “firing") including two arguments and
their role labels (blue) are highlighted.
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Challenges

Representations should capture long-range dependencies

A fire in a Bangladeshi garment factory has left at least
37 people dead and 100 hospitalized .

Distance (fire, hospitalized)
» Sequential = 15

Ph.D. Dissertation Defense by Wasi Ahmad
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Challenges

Representations should not be sensitive to word order

English follows Subject-Verb-Object (SVO)

A Pakistani court in central Punjab province has sentenced a Christian
man to life imprisonment.

Bengali follows Subject-Object-Verb (SOV)

N MHE FweTE AF6 NFIMA aAwmae aFed e T TaS a9
FEATMS TWEA®|
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Motivation: Encoding Syntax Structure

Encoding syntax to mitigate long-range dependencies issues

A fire in a Bangladeshi garment factory has left at least
37 people dead and 100 hospitalized .

Distance (fire, hospitalized) \
» Sequential = 15 j .

e

> SYHTGCT[C = 3 nsubyj aux obj punct
NOUN AUX PUNCT
A factory 37 ospitalized
det nmod nummod amod conj
DET NOUN NUM ADJ VERB
o

in a Bangladeshi garment least and 100

case det amod compound nmod cc nsubj

ADP DET ADJ NOUN ADV CCONJ NUM

at
Ph.D. Dissertation Defense by Wasi Ahmad case 33



Motivation: Encoding Syntax Structure

Encoding syntax to mitigate long-range dependencies issues

According to the popular IE dataset, ACEOS

Language Sequential Distance Structural Distance
English Chinese Arabic | English Chinese Arabic

Relation mentions 4.8 3.9 25.8 2.2 2.6 5.1

Event mentions and arguments 9.8 21.7 58.1 3.1 4.6 12.3

Table: Average sequential and structural (shortest path) distance between
relation mentions and event mentions and their candidate arguments.
Distances are computed by ignoring the order of mentions.

Ph.D. Dissertation Defense by Wasi Ahmad
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Motivation: Encoding Syntax Structure

Encoding syntax to mitigate word order differences issue

A Pakistani court in central Punjab province has  #55 *TI&T9 AT ﬂﬁ?@qﬂﬁﬁﬁ BIMGICENEIND
sentenced a Christian man to life imprisonment. o Sifer TEsiEa FEms M

it
oot
ER

BN

D Ie@ FEmg |
court has imprisonment obj compound  punct
nsubj aux obj obl punct NOUN / NOUN PUNCT
NOUN AUX NOUN NOUN PUNCT

amrid 9o AMFBIN  aFew BN TN

A Pakistani province a Christian to life nmod nummod  nmod nummod amod amod
det amod nmod det amod case compound NOUN NUM PROPN  NUM ADJ ADJ
DET ADJ NOUN DET ADJ ADP NOUN
in central Punjab RG]
case amod compound nmod
ADP ADJ PROPN PROPN
R
compound
PROPN
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Proposal

Adjust attention between tokens based on syntactic distance

A Pakistani court in central Punjab province has  #55 *TI&T9 AT ﬂﬁqﬂﬁ?ﬁrﬁ CIRGIOENED
sentenced a Christian man to life imprisonment. foe Tfe@ TEsET FEms ME®E|

ey
root
1 j VERB\
IS

: imprisonment obj compound  punct
aux obj obl punct NO NOUN PUNCT
NOUN AUX 2 NOUN 2 NOUN PUNCT 2 ?I
. . - : gweig a3 HFBIN  avew  fERF TN
A Pakistani province a Christian  to life amod  nummod nmod nummod amod amod
det amod nmod det amod case compound
DET ADJ 3 NOUN DET ADJ ADP NOUN 3INOUN NUM PROPN  NUM ADJ ADJ
in central Punjab A
case amod compound nmod
ADP ADJ  PROPN 4 PROPN
4y
. compound
* Published at AAATI 2021 PROPN
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Proposal

Adjust attention between tokens based on syntactic distance

« Pay more attention to tfokens that are closer and less attention to
tokens that are far away

_ QKT + M
0 = Attention (Q,K,V,M,d;) = F| softmax \/d_
k
Where, F(P);; = —U

and D;; is syntactic distance between token at position i and j
and Z; is the normalization factor.

* Published at AAAT 2021
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Proposal

Adjust attention between tokens based on syntactic distance

In multi-head attention,

* At each head, restrict tokens to attend tokens that are within a
certain distance K

oK + M)

Ja,

0 = Attention (Q,K,V,M,d;) = F| softmax (

0, D <K

—o00, otherwise

Where, F(P);; = i ———and M;; = {

]

* Published at AAAT 2021
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Proposal Summary

Syntactic distance-aware self-attention

_ QKT + M
0 = Attention (Q,K,V,M,d;) = F| softmax \/d—
k
0, Djj <K

_ Py =
Where, F(P);; = Z;Djj and M;; = {—oo, otherwise

(1) Allow tokens to attend tokens that are within distance K.

(2) Pay more attention to tokens that are closer and less attention to tokens that are
faraway in the syntax tree.

* Published at AAAT 2021
Ph.D. Dissertation Defense by Wasi Ahmad 39



Experiment Results

Event Ar'gumen‘l' Role Labeling Baseline models: CL_Trans_GCN,

CL GCN CL R
« Dataset: ACEO5 (En, Zh, Ar) L_GCN, CL_RNN
. Our proposed model: GATE
* Performance metric: F-score

mCL Trans GC(N ®mCL GCN mCL RNN m GATE

Ar=>En Ar=>7Zh Zh=>En En=>Zh Zh=>Ar En=>Ar

* Published at AAAT 2021
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Limitations

 Hard restrictions on attention
* Blocking tokens to attend tokens that are beyond distance K.

* Tree structure cannot be decoded from syntactic distances
* Parent-child relationship can be decoded given depth of tokens

* Part-of-speech (POS) tags are used as input features
« POS tags could play a role in determining attention weights

* Cannot be applied to pre-trained language encoders
* Because of the encoders’ own custom vocabulary




Outline

[3] Incorporating universal language syntax into multilingual encoders
for cross-lingual transfer [at ACL'21]

[4] Unsupervised cross-lingual representation learning for natural and
programming languages [at NAACLI'21]
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Proposal

Bias self-attention to provide syntactic clues
0 = Attention (Q + GG, K + GGE,V, M, d},)

« Where G is syntax representations learned by a graph attention
network (GAT).

» We call the addition terms (GG, GGF) syntax-bias.

 Intuition - attend tokens with a specific part-of-speech tag sequence
or dependencies.

* Published at ACL 2021
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Graph Attention Network (GAT)

GAT also uses multi-head attention®

Embeddings matrix: G° = [g, g3, ..., 90]

|

Gt = Attention (T,T,V, M, dy)

« GAT does not employ position representations
» Only uses word and part-of-speech embeddings, i.e., g0 = w;W, + pos; Wy

* Vaswani et al., 2017
Ph.D. Dissertation Defense by Wasi Ahmad
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Graph Attention Network (GAT)

GAT also uses multi-head attention®

Embeddings matrix: G° = [¢%, 49, ..., 9]
0, Dy<Kk

M. =
l / Y {—m,otherwise

Gt = Attention (T,T,V, M, dy)

« In GAT, typically K =1
« Allowing attention between adjacent words only
* Inour work, we find K = [2,4] is helpful for downstream tasks

* Vaswani et al., 2017
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Graph Attention Network (GAT)

GAT also uses multi-head attention®

Embeddings matrix: G° = [g, g3, ..., 90]

|

Gt = Attention (T,T,V, M, dy)

* GAT does not use feed-forward sublayer
« As aresult, GAT is light-weight
 Representations learnt at head h, at layer [ goes to head h, at layer [ + 1

* Vaswani et al., 2017
Ph.D. Dissertation Defense by Wasi Ahmad 46



Multi-task Fine-tuning

* Both pre-trained encoder and GAT are fine-tuned on the
downstream tasks

* GAT is additionally fine-tuned to predict the tree structure

« Use GAT's output representation to predict the tree distance
between all pairs of tokens and the tree depth of tokens

 Ensures GAT encodes the tree structure accurately

* Published at ACL 2021
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Multi-task Fine-tuning

Fine-tune multilingual encoder and GAT on downstream tasks
in the source language

L= Ltask + a(LdlSt + Ldepth)

________________ /N

. Least square loss for predicting

[ Least square loss for predicting | | Treedepthof fokens |

- distance between all pairs of tokens | dg,(g:) = (0297 (629:)

__________________________________________

del(gi:gj) = (91(9i - gj)) (91(9i - gj))

* Published at ACL 2021
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Experiments

Dataset
« Text classification: XNLI, PAWS-X
* Named entity recognition: Wikiann, CoNLL
* Question answering: MLQA, XQuAD
« Semantic parsing: mTOP, mMATLS++

Languages
Source: en; Target: ar, bg, de, el, es, fr, hi, ru, tr, ur, vi, zh, ko, ja, nl, pt

Models

« mBERT: fine-tuned on the pre-processed datasets
* mMBERT+Syn: proposed approach

* Published at ACL 2021
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Results: Text Classification

Zero-shot transfer results on PAWS-X
« Given a pair of sentences, predict if they are paraphrase

H mBERT m mBERT+Syn

de es fr zh ko ja

Ph.D. Dissertation Defense by Wasi Ahmad 50
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Results: Text Classification

Zero-shot generalized transfer results on PAWS-X
* Given a pair of sentences from two different languages, predict if

they are paraphrase

si/so | en de e fr ja ko zh
en - 07 16 14 47 25 54
de 05 - 20 21 51 35 59
es 1.0 21 - 17 46 3.0 6.6
fr 09 17 19 - 50 2.7 54
ja 52 53 56 51 - 59 51
ko 31 28 43 39 64 - 5.1
zh 58 55 63 60 6.1 45 -

* Published at ACL 2021
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Limitations

« Assumption: we have access to an of f-the-shelf universal
parser to collect POS tags and dependency parse structure

of the input sequences

* Parsers often normalize the input that lead to inconsistent
characters between input text and the output tokenized
text (e.g., happens for languages, such as Arabic)



Related Works

Revising positional encoding to mitigate word order issues
« Sinusoidal encoding [Stickland et al., 2020]
* Freezing positional encoding [Liu et al., 2020]
 Applying CNN to encode local n-gram features [Liu et al., 2020]
« Structure-aware position representation [Ding et al., 2020, Wang et al., 2019]

Syntax-aware self-attention
« Dependency-aware self-attention [Deguchi et al., 2019, Bugliarello et al., 2020]
« Syntax-aware Local Attention [Li et al., 2021]
« Syntax-augmented BERT [Sachan et al., 2021]
« Distance-aware Transformer [Wu et al., 2021]
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Outline

[4] Unsupervised cross-lingual representation learning for natural and
programming languages [at NAACLI'21]
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Representation Learning for PL & NL

* Developers use programming languages (PL) to develop
software and natural language (NL) to document them

* Learning representations for PL & NL can benefit many
downstream tasks

« Code summarization
* Code generation
« Code translation

* Can we apply NLP technology to jointly learn representations
for PL & NL?



NL vs. PL

NL and PL have similarities

Natural Language

Programming Language

Word meaning

Tokens’ meaning

Dependency structure

Abstract syntax tree structure

Coreference, events reasoning

Data flow structure

Discourse analysis

Program structure

Ph.D. Dissertation Defense by Wasi Ahmad
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Unsupervised Representation Learning

» Useful when there is abundant unlabeled data

 Ex., Java/Python functions from Github
* Ex., questions/answers from StackOverflow

* Benefits low-resource learning
* Learning program translation using a few thousands of examples

* How to use unlabeled data for representation learning?



Our Proposal: PLBART

Pre-training Transformer via denoising autoencoding in
program and natural languages jointly

static void main  ( see /5>
Bidirectional Encoder |:{> Generative Decoder
static void for <MASK> eee } <s> static void main cee }

* Published at NAACL 2021
Ph.D. Dissertation Defense by Wasi Ahmad
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Denoising Autoencoding

Three noise functions

« Token masking, token deletion, token infilling [Lewis et al., 2020]

PLBART Encoder Input

PLBART Decoder Output

Is O the [MASK] Fibonacci [MASK] ? <En>

public static main ( String args [ ] ) { date = Date () ;
System . out . ( String . format ( " Current Date : %
tc",)); } ava>

def addThreeNumbers ( x , y, z ) : NEW_LINE
INDENT return [MASK]

<En> Is O the first Fibonacci number ?

<java> public static void main ( String args [ ] ) {
Date date = new Date ( ) ; System . out . printf (
String . format ( " Current Date : % tc " , date ) ) ; }

def addThreeNumbers ( x , vy, z ) :
NEW_LINE INDENT return X +y + z

* Published at NAACL 2021

Ph.D. Dissertation Defense by Wasi Ahmad
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Pre-training Corpus

 Java/Python functions from Github
» Questions/answers from StackOverflow
« Up/down sample to balance the corpora

Java  Python NL
All Size 352GB 224 GB 79 GB
All - Nb of tokens 36.4 B 28B 6.7B
All - Nb of documents 470 M 2I0M 47M

* Published at NAACL 2021
Ph.D. Dissertation Defense by Wasi Ahmad
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PLBRART on Code Translation

Train/Valid/Test: 10,300/500/1000 [Lu et al. 2021]

Methods Java to C# C# to Java

BLEU EM CodeBLEU | BLEU EM CodeBLEU
Transformer 55.84 33.00 63.74 50.47 37.90 61.59
RoBERTa (code) | 77.46 56.10 83.07 71.99 57.90 80.18
CodeBERT 79.92 59.00 85.10 72.14 58.80 79.41
GraphCodeBERT | 80.58 59.40 - 72.64 58.80 -
PLBART 83.02 64.60 87.92 78.35 65.00 85.27

* Published at NAACL 2021
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Summary

 Study shows that PLBART learns program syntax, style, and
logical flow
* e.g., identifier naming convention, “if" block inside an "else" block is
equivalent to “else if" block
* PLBART achieves state-of-the-art performance in a wide
range of downstream tasks

 Code summarization, code generation, code translation, program
repair, clone detection, and vulnerability prediction
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Summary of Findings

* Models carrying less word order information transfers
better, specially to distant languages

* Incorporating universal language syntax into multilingual
representations improve cross-lingual transfer

* Unlabeled data can be leveraged to learn representations to
benefit cross-lingual transfer



Future Works

Role of language syntax in improving alignment of multilingual

contextual word representations

He moved outside of Augusta right away .

| .

moved

root

VERB

He Augusta /away :
nsubj obl advmod punct
PRON PROPN ADV PUNCT

¢

outside  of right
advmod case advmod
ADV ADP ADV

He right away Augusta of outside moved .

NN\ /S

Ig Jid 3TTRCT &b g3 Ied TV |
e

root
VEbRB
by |

qg o 3TTRET
nsubj:pass advmod obl aux:pass punct
PRON ADV PSOPN\ AUX PUNCT
& CLES
case case
ADP ADP
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Future Works

Cross-lingual representation learning across domains
* In social media, users often use code-mixed language

* Develop ways for feature representations that smoothens the
differences in the two languages
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